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Abstract 

Ventricular arrhythmias (VA) remain a major public 
health concern and are frequently managed in high-risk 
patients using implantable cardioverter-defibrillators 
(ICDs). Beyond their therapeutic function, ICDs 
continuously capture physiological data that provide early 
warning of impending arrhythmic events. This study aimed 
to assess the feasibility of predicting VA occurrence from 
routine collectedly ICD-derived data. We retrospectively 
analyzed two patient groups: patients who experienced at 
least one VA episode and a control group without 
documented VAs. Eleven daily physiological parameters, 
including mean heart rate and shock impedance, were 
extracted, and deviations from a reference follow-up were 
quantified using linear mixed-effects models, yielding 44 
candidate predictive features. The 10 most informative 
variables were identified through clinical review and 
Morris sensitivity analysis. A gradient-boosting machine-
learning model was then trained, with performance 
evaluated via 10-fold cross-validation. The model 
achieved a correct classification rate of 77% and an area 
under the receiver operating characteristic curve of 0.76. 
This study provides proof of concept that routinely 
collected ICD data can enable short-term VA prediction, 
opening a potential avenue for timely, preventive clinical 
interventions. 

 
1. Introduction 

Sudden cardiac death (SCD) affects an estimated 4-5 
million individuals worldwide each year, accounting for up 
to 20% of all-cause mortality [1]. It is defined as 
unexpected, natural cardiac death resulting from a 
malignant ventricular arrhythmia (VA).  

The abrupt onset of VA and the requirement for 
immediate intervention are critical determinants of 
prognosis. Cardiopulmonary resuscitation and external 

defibrillation must be initiated within minutes of VA onset 
to maximize survival. Although overall survival rates 
remain low (less than 10%), immediate recognition and 
prompt resuscitation can achieve survival rates 
approaching 80% in ideal scenarios [1,2]. 

Contrary to the notion that SCD always occurs “out of 
the blue,” studies have shown that up to half of patients 
experience warning symptoms shortly before collapse [3]. 
This observation supports the emerging concept of near-
term prevention, whereby timely recognition of 
physiological changes could enable rapid preventive or 
therapeutic intervention [4,5]. Since the 1990s, 
implantable cardioverter defibrillators (ICDs) have been 
recommended for patients at high-risk of SCD [1,6]. In 
addition to delivering life-saving therapies, modern ICDs 
can record intracardiac electrograms during clinically 
significant arrhythmias and capture daily physiological 
metrics such as physical activity levels. 

Given the practical limitations of storing large volumes 
of electrogram data over extended periods, we propose an 
alternative strategy: predicting VA events using routinely 
collected physiological parameters from ICDs.  

 
2. Study design 

This work is part of the Implantable Automatic 
Defibrillator – Primary Prevention (DAI-PP) research 
consortium, a national multicentre programme aimed at 
improving the prediction of SCD/VAs, as well as 
optimizing the net clinical benefit of ICDs. Among its 
ongoing investigations, the flagship DAI-PP cohort study 
seeks to enroll 10,000 patients (recruitment began in 2018) 
and follow them for 10 years using a continuous follow-up 
strategy enabled by ICDs connected to remote monitoring 
systems. Feasibility of such a collaborative approach was 
demonstrated through a pilot study [7]. Device data are 
collected from all manufacturers. 
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2.1. Data base 
Given the heterogeneity of physiological data recorded 

across device manufacturers, this proof-of-concept study 
was restricted to patients implanted with a Biotronik ICD. 
Two distinct patient groups were analyzed:  

• VA group: 64 patients who experienced at least one 
documented episode of VA. To exclude false positives 
such as supraventricular arrhythmia or artefacts, all 
corresponding electrograms (EGMs) were reviewed by 
an experienced cardiologist. 

• Control group: 776 patients without any documented 
VA during follow-up.   

The recruitment pathways for these two groups are 
illustrated in Figures 1 and 2, respectively. 

 

 
 

Figure 1. Recruitment procedure for the VA group. 
 
 

 
 

Figure 2. Recruitment procedure for the control group 
 

2.2. The physiological features set 
Eleven daily physiological variables (table 1) were 

available for analysis, representing a compromise between 
the parameters recorded by single-, dual- and triple-
chamber Biotronik ICDs. 
 
Table 1. Physiological variables included in the analysis. 
 

 

2.3. Selection of control patients 
Given the limited number of patients in the VA group, 

control patients were selected at a 2:1 ratio (two controls 
per VA patient). This approach ensured greater 
homogeneity of the dataset, which is essential for valid 
comparison between groups. Statistical matching was 
performed to align the control and VA groups. Exact 
matching was applied for sex, type of heart disease, and 
indication for implantation. Additionally, matching was 
carried out for age and left ventricular ejection fraction 
using the Mahalanobis distance, which accounts for the 
covariance structure of the variables when assessing 
similarity between individuals.  

 
3. Methods 

Analysis was restricted to the 30-day period preceding 
the occurrence of a ventricular arrhythmia (VA). Day 0 
was defined as 30 days before the VA episode, and day 29 
as the day immediately preceding the event. In a first step, 
the characteristics of the database were explored. 
Temporal representations of the multidimensional data 
revealed distinct patterns between VA and control 
patients—for example, a progressive increase in mean 
heart rate before ventricular tachycardia. These findings 
informed the selection of relevant attributes and the choice 
of an appropriate classification method, which are 
described below. 

 
3.1. Definition of the set of variables  

Preliminary analyses indicated that several variables 
exhibited temporal variation. To capture this information, 
we considered not only the daily raw data but also two 
derived measures: (i) the day-to-day difference between 
consecutive measurements, and (ii) the temporal trend 
estimated using a linear mixed-effects model. 

 
3.2.  Temporal difference 

Let xi,j(t) denote the jth explanatory variable of patient i 
at time t. A simple way to capture temporal change is to 
compute the difference between two time points:  

△!"= 𝑥!"(𝑡𝑎) − 𝑥!"(𝑡𝑜)  
where to is the reference time and ta is the time point 

selected for comparison.  
  

3.3. Modeling by linear mixed effects  
A linear mixed-effects model incorporates both fixed 
effects, which influence the mean response, and random 
effects, which account for variability between individuals. 
In this study, each patient had repeated measurements of 
each variable over the 30-day observation window. This 
structure was modelled by introducing patient-specific 
random effects. For each variable j and patient i, the model 
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is expressed as: 
𝑥!"(𝑡) = 𝑏#!" + 𝑎$!"𝑡 + 𝜖!"(𝑡) 

where :  
– b0ij =β0+βij is the mixed intercept, with β0 as the fixed 

intercept and βij as the patient-specific random 
intercept.  

– a1ij =a1 + aaij is the slope, with a1 as the fixed slope 
coefficient and aaij as the patient-specific random 
slope. 

– eij(t) is the residual error term.  
 
In summary, for each variable, four derived measures were 
considered: i) the daily raw value xi,j(t) (t ∈ [0, 1, ...29]), ii) 
the temporal difference △ij, iii) the intercept boij, iv) the 
slope a1ij leading to a total of 44 explanatory variables 
capturing the temporal dynamics of the physiological 
parameters over the 30-day period. 
 
3.4.  Gradient boosting model 

Several classification algorithms were tested and 
evaluated. Gradient boosting (GB) achieved the highest 
performance in terms of area under the receiver operating 
curves (AUC), F1-score, and accuracy. Gradient boosting 
is a supervised learning technique primarily used for 
regression and classification. It constructs a strong 
predictive model by sequentially combining multiple weak 
learners, typically shallow decision trees. Each successive 
tree is trained to correct the residual errors of the preceding 
ensemble, with the correction process guided by gradient 
descent optimization of a specified loss function. In this 
study, the Extreme GB (XGBoost) implementation was 
used, owing to its computational efficiency, regularization 
capabilities, and proven performance in tabular data 
prediction tasks. 

 
4. Results 

Results were obtained through an iterative process 
involving the selection of the most informative variables, 
the optimization of the observation period and the final 
performances. 

 
4.1.  Selection of the relevant variables 

Given the limited number of observations in the VA 
group, the input dimensionality of the model was reduced 
while retaining the relevant informative predictors. Three 
criteria were applied to guide variable selection: clinical 
relevance, discriminant analysis and Morris's sensitivity 
analysis. 

Clinical relevance: Selected variables had to be 
interpretable and meaningful to clinical experts. For 
example, an increase in heart rate is a well-recognised 
phenomenon preceding ventricular arrhythmia [8].  

Discriminant analysis: Stepwise discriminant analysis 

was used to assess the contribution of each variable in 
distinguishing between the VA and control groups.  

Morris sensitivity analysis: Following model training, 
sensitivity analysis was conducted to identify variables 
whose modification produced the largest changes in 
classification performance. 

By combining these three approaches, ten variables 
were ultimately retained for model development. 

 
Table 2. The ten selected variables (V1 and V11 are 
detailed in Table 1). 
 

 
 

4.2.  Optimization of the analysis window 
The optimal duration of the analysis window was 

determined empirically. Time windows ranging from 5 to 
30 days were tested to train the GB model. Model 
performance (assessed by AUC, F1-score and accuracy) 
for each window length is presented in Figure 3. The 
highest performance was achieved with a 19-day window.  

 

 
Figure 3. Performance according to the window size. 
 

4.3.  The final performance 
This analysis included 186 observations described by 10 

variables. Model evaluation was performed using 10-fold 
cross-validation. A 19-day sliding window is applied 
across the 30-day pre-event period.  

The results of the optimized GB model are shown in 
Figure 4. Performance was close to random when the 
analysis window was distant from the VA event. In 
contrast, predictive accuracy improved progressively as 
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the window approached the date of the arrhythmia. 
 

 
Figure 4. Performance according to the number of days 

before the VA event. 
 

5.  Discussion 
This proof-of-concept study was designed to assess the 

feasibility of predicting VAs occurrence using 
physiological data routinely collected by ICDs. Our 
findings demonstrate that patients at increased risk of VA 
can be identified with a good classification performance 
(accuracy = 0.77). These results are consistent with those 
reported by Ginder et al. in 2023 [8], who reached similar 
conclusions.  

A second objective was to identify variables most 
relevant for prediction. Morris sensitivity analysis applied 
to the 44 candidate variables highlighted ventricular rate 
and the number of non-sustained ventricular tachycardia 
episodes in the preceding days as associated risk factors—
findings in line with prior literature [9]. Physiologically, 
these associations may reflect heightened sympathetic 
nervous system activity. In addition, consistent with the 
observations of Ginder et al. [8], our study identified shock 
impedance as a potential risk factor.  

 Despite encouraging results, the misclassification rate 
remained relatively high (approximately 20%). The most 
likely explanation is the limited sample size in this proof-
of-concept study and heterogeneity in the type of ICD 
where, to assure homogeneity, certain parameters, 
potentially informative, were excluded from the analysis, 
which may have reduced predictive performance. 
 
6.  Conclusion 

The significance of this study lies in providing a robust 
proof of concept for predicting ventricular arrhythmias 
using physiological data obtained through ICDs. Its 
novelty resides in the application of linear mixed-effects 
models to capture dynamic temporal trends in predictive 
variables. Future research will build on the large-scale 
DAI-PP Biotronik database, which currently includes 500 
patients with documented VAs and more than 2,000 

controls. This expanded dataset will enable the 
development and validation of advanced deep-learning 
architectures which have already shown promising results 
[10,11]. Furthermore, incorporating data from other device 
manufacturers represents an important next step to enhance 
model generalizability and predictive accuracy. 
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