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Abstract

Ventricular arrhythmias (VA) remain a major public
health concern and are frequently managed in high-risk
patients using implantable cardioverter-defibrillators
(ICDs). Beyond their therapeutic function, ICDs
continuously capture physiological data that provide early
warning of impending arrhythmic events. This study aimed
to assess the feasibility of predicting VA occurrence from
routine collectedly ICD-derived data. We retrospectively
analyzed two patient groups: patients who experienced at
least one VA episode and a control group without
documented VAs. Eleven daily physiological parameters,
including mean heart rate and shock impedance, were
extracted, and deviations from a reference follow-up were
quantified using linear mixed-effects models, yielding 44
candidate predictive features. The 10 most informative
variables were identified through clinical review and
Morris sensitivity analysis. A gradient-boosting machine-
learning model was then trained, with performance
evaluated via 10-fold cross-validation. The model
achieved a correct classification rate of 77% and an area
under the receiver operating characteristic curve of 0.76.
This study provides proof of concept that routinely
collected ICD data can enable short-term VA prediction,
opening a potential avenue for timely, preventive clinical
interventions.

1. Introduction

Sudden cardiac death (SCD) affects an estimated 4-5
million individuals worldwide each year, accounting for up
to 20% of all-cause mortality [1]. It is defined as
unexpected, natural cardiac death resulting from a
malignant ventricular arrhythmia (VA).

The abrupt onset of VA and the requirement for
immediate intervention are critical determinants of
prognosis. Cardiopulmonary resuscitation and external
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defibrillation must be initiated within minutes of VA onset
to maximize survival. Although overall survival rates
remain low (less than 10%), immediate recognition and
prompt resuscitation can achieve survival rates
approaching 80% in ideal scenarios [1,2].

Contrary to the notion that SCD always occurs “out of
the blue,” studies have shown that up to half of patients
experience warning symptoms shortly before collapse [3].
This observation supports the emerging concept of near-
term  prevention, whereby timely recognition of
physiological changes could enable rapid preventive or
therapeutic  intervention [4,5]. Since the 1990s,
implantable cardioverter defibrillators (ICDs) have been
recommended for patients at high-risk of SCD [1,6]. In
addition to delivering life-saving therapies, modern ICDs
can record intracardiac electrograms during clinically
significant arrhythmias and capture daily physiological
metrics such as physical activity levels.

Given the practical limitations of storing large volumes
of electrogram data over extended periods, we propose an
alternative strategy: predicting VA events using routinely
collected physiological parameters from ICDs.

2. Study design

This work is part of the Implantable Automatic
Defibrillator — Primary Prevention (DAI-PP) research
consortium, a national multicentre programme aimed at
improving the prediction of SCD/VAs, as well as
optimizing the net clinical benefit of ICDs. Among its
ongoing investigations, the flagship DAI-PP cohort study
seeks to enroll 10,000 patients (recruitment began in 2018)
and follow them for 10 years using a continuous follow-up
strategy enabled by ICDs connected to remote monitoring
systems. Feasibility of such a collaborative approach was
demonstrated through a pilot study [7]. Device data are
collected from all manufacturers.
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2.1. Data base

Given the heterogeneity of physiological data recorded
across device manufacturers, this proof-of-concept study
was restricted to patients implanted with a Biotronik ICD.
Two distinct patient groups were analyzed:

e VA group: 64 patients who experienced at least one
documented episode of VA. To exclude false positives
such as supraventricular arrthythmia or artefacts, all
corresponding electrograms (EGMs) were reviewed by
an experienced cardiologist.

e Control group: 776 patients without any documented
VA during follow-up.

The recruitment pathways for these two groups are
illustrated in Figures 1 and 2, respectively.
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Figure 1. Recruitment procedure for the VA group.
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Figure 2. Recruitment procedure for the control group

2.2.  The physiological features set

Eleven daily physiological variables (table 1) were
available for analysis, representing a compromise between
the parameters recorded by single-, dual- and triple-
chamber Biotronik ICDs.

Table 1. Physiological variables included in the analysis.

Vi Mean ventricular rate

V2 Mean resting ventricular rate

V3 Right ventricular lead impedance
V4 Shock impedance

V5 Mean sensitivity threshold

V6 Minimum sensitivity threshold

V7 Percentage of right ventricular pacing
V8 Intensity of Physical activity

V9 Number of supraventricular tachycardias

V10 [Number of non-sustained ventricular tachycardias

V11  [Number of ventricular tachycardias in zone 1

2.3.  Selection of control patients

Given the limited number of patients in the VA group,
control patients were selected at a 2:1 ratio (two controls
per VA patient). This approach ensured greater
homogeneity of the dataset, which is essential for valid
comparison between groups. Statistical matching was
performed to align the control and VA groups. Exact
matching was applied for sex, type of heart disease, and
indication for implantation. Additionally, matching was
carried out for age and left ventricular ejection fraction
using the Mahalanobis distance, which accounts for the
covariance structure of the variables when assessing
similarity between individuals.

3. Methods

Analysis was restricted to the 30-day period preceding
the occurrence of a ventricular arrhythmia (VA). Day 0
was defined as 30 days before the VA episode, and day 29
as the day immediately preceding the event. In a first step,
the characteristics of the database were explored.
Temporal representations of the multidimensional data
revealed distinct patterns between VA and control
patients—for example, a progressive increase in mean
heart rate before ventricular tachycardia. These findings
informed the selection of relevant attributes and the choice
of an appropriate classification method, which are
described below.

3.1. Definition of the set of variables

Preliminary analyses indicated that several variables
exhibited temporal variation. To capture this information,
we considered not only the daily raw data but also two
derived measures: (i) the day-to-day difference between
consecutive measurements, and (ii) the temporal trend
estimated using a linear mixed-effects model.

3.2.  Temporal difference

Let xi;(t) denote the jth explanatory variable of patient i
at time t. A simple way to capture temporal change is to
compute the difference between two time points:

A= x5(ta) — x;;(to)

where fo is the reference time and ta is the time point

selected for comparison.

3.3.  Modeling by linear mixed effects

A linear mixed-effects model incorporates both fixed
effects, which influence the mean response, and random
effects, which account for variability between individuals.
In this study, each patient had repeated measurements of
each variable over the 30-day observation window. This
structure was modelled by introducing patient-specific
random effects. For each variable j and patient i, the model
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is expressed as:
Xij(£) = boyj + ayiit + €;;(6)
where :

— boij =Po+Pij is the mixed intercept, with Bo as the fixed
intercept and Pj as the patient-specific random
intercept.

— a1 =a1 + d.ij is the slope, with o as the fixed slope
coefficient and o.ij as the patient-specific random
slope.

— &ij(t) is the residual error term.

In summary, for each variable, four derived measures were
considered: i) the daily raw value xi;(?) (t € [0, 1, ...29]), i)
the temporal difference A4, iii) the intercept boj, iv) the
slope as; leading to a total of 44 explanatory variables
capturing the temporal dynamics of the physiological
parameters over the 30-day period.

3.4.  Gradient boosting model

Several classification algorithms were tested and
evaluated. Gradient boosting (GB) achieved the highest
performance in terms of area under the receiver operating
curves (AUC), Fl-score, and accuracy. Gradient boosting
is a supervised learning technique primarily used for
regression and classification. It constructs a strong
predictive model by sequentially combining multiple weak
learners, typically shallow decision trees. Each successive
tree is trained to correct the residual errors of the preceding
ensemble, with the correction process guided by gradient
descent optimization of a specified loss function. In this
study, the Extreme GB (XGBoost) implementation was
used, owing to its computational efficiency, regularization
capabilities, and proven performance in tabular data
prediction tasks.

4. Results

Results were obtained through an iterative process
involving the selection of the most informative variables,
the optimization of the observation period and the final
performances.

4.1. Selection of the relevant variables

Given the limited number of observations in the VA
group, the input dimensionality of the model was reduced
while retaining the relevant informative predictors. Three
criteria were applied to guide variable selection: clinical
relevance, discriminant analysis and Morris's sensitivity
analysis.

Clinical relevance: Selected variables had to be
interpretable and meaningful to clinical experts. For
example, an increase in heart rate is a well-recognised
phenomenon preceding ventricular arrhythmia [8].

Discriminant analysis: Stepwise discriminant analysis

was used to assess the contribution of each variable in
distinguishing between the VA and control groups.

Morris sensitivity analysis: Following model training,
sensitivity analysis was conducted to identify variables
whose modification produced the largest changes in
classification performance.

By combining these three approaches, ten variables
were ultimately retained for model development.

Table 2. The ten selected variables (V1 and V11 are
detailed in Table 1).

Variables Day Intercept Slope A
V1 X X X
V2 X
V3
V4 X
V5 X
Vé X
\4
\'% X
Vo

V10 X
V1l X

4.2. Optimization of the analysis window

The optimal duration of the analysis window was
determined empirically. Time windows ranging from 5 to
30 days were tested to train the GB model. Model
performance (assessed by AUC, Fl-score and accuracy)
for each window length is presented in Figure 3. The
highest performance was achieved with a 19-day window.

10 Variable Model Performance Over Time
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Figure 3. Performance according to the window size.

4.3. The final performance

This analysis included 186 observations described by 10
variables. Model evaluation was performed using 10-fold
cross-validation. A 19-day sliding window is applied
across the 30-day pre-event period.

The results of the optimized GB model are shown in
Figure 4. Performance was close to random when the
analysis window was distant from the VA event. In
contrast, predictive accuracy improved progressively as
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the window approached the date of the arrhythmia.

10 Variable Model Performance Over Time
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Figure 4. Performance according to the number of days
before the VA event.

5. Discussion

This proof-of-concept study was designed to assess the
feasibility of predicting VAs occurrence using
physiological data routinely collected by ICDs. Our
findings demonstrate that patients at increased risk of VA
can be identified with a good classification performance
(accuracy = 0.77). These results are consistent with those
reported by Ginder et al. in 2023 [8], who reached similar
conclusions.

A second objective was to identify variables most
relevant for prediction. Morris sensitivity analysis applied
to the 44 candidate variables highlighted ventricular rate
and the number of non-sustained ventricular tachycardia
episodes in the preceding days as associated risk factors—
findings in line with prior literature [9]. Physiologically,
these associations may reflect heightened sympathetic
nervous system activity. In addition, consistent with the
observations of Ginder et al. [8], our study identified shock
impedance as a potential risk factor.

Despite encouraging results, the misclassification rate
remained relatively high (approximately 20%). The most
likely explanation is the limited sample size in this proof-
of-concept study and heterogeneity in the type of ICD
where, to assure homogeneity, certain parameters,
potentially informative, were excluded from the analysis,
which may have reduced predictive performance.

6. Conclusion

The significance of this study lies in providing a robust
proof of concept for predicting ventricular arrhythmias
using physiological data obtained through ICDs. Its
novelty resides in the application of linear mixed-effects
models to capture dynamic temporal trends in predictive
variables. Future research will build on the large-scale
DAI-PP Biotronik database, which currently includes 500
patients with documented VAs and more than 2,000

controls. This expanded dataset will enable the
development and validation of advanced deep-learning
architectures which have already shown promising results
[10,11]. Furthermore, incorporating data from other device
manufacturers represents an important next step to enhance
model generalizability and predictive accuracy.
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